Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 155
1.
Front Public Health ; 12: 1275447, 2024.
Article En | MEDLINE | ID: mdl-38532972

Objective: To explore the effect of a video teach-back method on continuous family nursing care of stroke patients. Methods: Stroke patients hospitalized in our hospital between March 2020 and March 2023 who met the inclusion criteria were randomly divided into an intervention group (n = 45), who received routine health education plus video teach-back training of caregivers, and a control group (n = 45), who received routine health education only. The effects on nursing-related variables were compared between the two groups. Results: Total scores representing the caring ability of caregivers in the intervention group increased significantly over time relative to baseline and were higher than those of the control group. Scores representing the care burden of caregivers in the intervention group decreased significantly over time and were lower than those of the control group. Conclusion: The teach-back method combined with video education improves the nursing ability of family caregivers and can improve the self-care ability of stroke patients.


Stroke , Humans , Health Education/methods , Patients
2.
Blood Sci ; 6(1): e00178, 2024 Jan.
Article En | MEDLINE | ID: mdl-38213825

Letermovir is a specific inhibitor of cytomegalovirus (CMV) terminase complex. Several studies have reported that letermovir can effectively prevent CMV activation after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aimed to identify the efficacy and safety of letermovir prophylaxis for CMV infection after allo-HSCT with a systemic review and meta-analysis. A literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. PubMed and Embase databases were searched. A total of 28 studies were included. The incidence of CMV activation at 14 weeks after HSCT was 0.10 (95% confidence interval [CI], 0.06-0.18), which was 0.10 (95% CI, 0.04-0.21) and 0% in adult and children (2 studies were included and both of them were 0%). In addition, the incidence of CMV activation at 14 weeks after allo-HSCT was 0.11 (95% CI, 0.06-0.21) and 0.07 (only 1 study included), respectively, in retrospective and prospective studies. The incidence of CMV activation at 100 and 200 days after HSCT was 0.23 (95% CI, 0.16-0.33) and 0.49 (95% CI, 0.32-0.67), respectively. The incidence of CMV disease at 14 weeks and at 6 months after HSCT was 0.01 (95% CI, 0.01-0.02) and 0.03 (95% CI, 0.01-0.09), respectively. Thus, our systemic review and meta-analysis suggested that letermovir prophylaxis was safe and effective for CMV activation after allo-HSCT.

3.
CNS Neurosci Ther ; 30(1): e14362, 2024 01.
Article En | MEDLINE | ID: mdl-37469037

AIMS: The basolateral amygdala (BLA) plays an integral role in anxiety disorders (such as post traumatic stress disorder) stem from dysregulated fear memory. The excitability of glutamatergic neurons in the BLA correlates with fear memory, and the afterhyperpolarization current (IAHP ) mediated by small-conductance calcium-activated potassium channel subtype 2 (SK2) dominates the excitability of glutamatergicneurons. This study aimed to explore the effect of MPP2 interacts with SK2 in the excitability of glutamatergic neurons in the BLA and the extinction of conditioned fear in mice. METHODS: Fear memory was analyzed via freezing percentage. Western blotting and fluorescence quantitative PCR were used to determine the expression of protein and mRNA respectively. Electrophysiology was employed to measure the excitability of glutamatergic neurons and IAHP . RESULTS: Fear conditioning decreased the levels of synaptic SK2 channels in the BLA, which were restored following fear extinction. Notably, reduced expression of synaptic SK2 channels in the BLA during fear conditioning was caused by the increased activity of protein kinase A (PKA), while increased levels of synaptic SK2 channels in the BLA during fear extinction were mediated by interactions with membrane-palmitoylated protein 2 (MPP2). CONCLUSIONS: Our results revealed that MPP2 interacts with the SK2 channels and rescues the excitability of glutamatergic neurons by increasing the expression of synaptic SK2 channels in the BLA to promote the normalization of anxiety disorders and provide a new direction for the treatment.


Basolateral Nuclear Complex , Animals , Mice , Basolateral Nuclear Complex/physiology , Electrophysiological Phenomena , Extinction, Psychological/physiology , Fear/physiology , Neurons
4.
J Neurol ; 271(2): 748-771, 2024 Feb.
Article En | MEDLINE | ID: mdl-38010498

Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.


Drug Resistant Epilepsy , Epilepsy , Metformin , Humans , AMP-Activated Protein Kinases/metabolism , Drug Resistant Epilepsy/drug therapy , Metformin/therapeutic use , Epilepsy/drug therapy , Seizures/drug therapy
5.
iScience ; 26(10): 107878, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37810240

Depression is a global disease with a high prevalence. Here, we examine the role of the circuit from prelimbic mPFC (PrL) to the anterior ventral bed nucleus of the stria terminalis (avBNST) in depression-like mice through behavioral tests, immunofluorescence, chemogenetics, optogenetics, pharmacology, and fiber photometry. Mice exposed to chronic restraint stress with individual housing displayed depression-like behaviors. Optogenetic or chemogenetic activation of the avBNST-projecting glutamatergic neurons in the PrL had an antidepressant effect. Moreover, we found that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptors (AMPARs) play a dominant role in this circuit. Systemic administration of ketamine profoundly alleviated depression-like behaviors in the mice and rapidly rescued the decreased activity in the PrLGlu→avBNSTGABA circuit. Furthermore, the fast-acting effect of ketamine on depressive behaviors was diminished when the circuit was inhibited. To summarize, activating the PrLGlu→avBNSTGABA circuit quickly ameliorated depression-like behaviors. Thus, we propose the PrLGlu→avBNSTGABA circuit as a target for fast regulation of depression.

6.
Mol Psychiatry ; 28(9): 3955-3965, 2023 Sep.
Article En | MEDLINE | ID: mdl-37798418

Diabetic patients receiving the antidiabetic drug metformin have been observed to exhibit a lower prevalence of anxiety disorders, yet the precise mechanism behind this phenomenon is unclear. In our study, we found that anxiety induces a region-specific reduction in AMPK activity in the medial prefrontal cortex (mPFC). Concurrently, transgenic mice with brain-specific AMPK knockout displayed abnormal anxiety-like behaviors. Treatment with metformin or the overexpression of AMPK restored normal AMPK activity in the mPFC and mitigated social stress-induced anxiety-like behaviors. Furthermore, the specific genetic deletion of AMPK in the mPFC not only instigated anxiety in mice but also nullified the anxiolytic effects of metformin. Brain slice recordings revealed that GABAergic excitation and the resulting inhibitory inputs to mPFC pyramidal neurons were selectively diminished in stressed mice. This reduction led to an excitation-inhibition imbalance, which was effectively reversed by metformin treatment or AMPK overexpression. Moreover, the genetic deletion of AMPK in the mPFC resulted in a similar defect in GABAergic inhibitory transmission and a consequent hypo-inhibition of mPFC pyramidal neurons. We also generated a mouse model with AMPK knockout specific to GABAergic neurons. The anxiety-like behaviors in this transgenic mouse demonstrated the unique role of AMPK in the GABAergic system in relation to anxiety. Therefore, our findings suggest that the activation of AMPK in mPFC inhibitory neurons underlies the anxiolytic effects of metformin, highlighting the potential of this primary antidiabetic drug as a therapeutic option for treating anxiety disorders.


Anti-Anxiety Agents , Metformin , Humans , Mice , Animals , Anti-Anxiety Agents/pharmacology , AMP-Activated Protein Kinases/pharmacology , Metformin/pharmacology , Hypoglycemic Agents/pharmacology , Prefrontal Cortex , GABAergic Neurons
7.
Technol Health Care ; 2023 Aug 24.
Article En | MEDLINE | ID: mdl-37661901

BACKGROUND: Population aging is a social problem that is being faced in most countries. OBJECTIVE: To apply the National Early Warning Score (NEWS) for an early warning on the vital signs and consciousness of elderly patients who are hospitalized in the gastrointestinal surgical department and to provide a reference for early detection of changes in illness severity in elderly patients by studying the correlation between NEWS value and changes in illness severity. METHODS: We enrolled 528 elderly patients who were hospitalized in the gastrointestinal surgical department of a tertiary grade A hospital in Guizhou Province between June 2020 and May 2021, to analyze how NEWS max value correlates with illness severity and obtain the optimal NEWS cutoff value for both potentially critically ill and critically ill elderly patients using the receiver operating characteristic (ROC) curve. RESULTS: There were statistically significant differences in NEWS values between elderly patients with various illness severities (P< 0.05). NEWS values correlated positively with illness severity (r= 0.605, P< 0.001). Based on the ROC curve, early warning trigger values for NEWS to identify potentially critically ill, critically ill and terminally ill elderly patients were 6, 7 and 8, respectively. The area under the curve (AUC) for potentially critically ill, critically ill and terminally ill elderly patients was 0.907, 0.921 and 0.939, respectively. NEWS performed better in detecting patient illness severity than Modified Early Warning Score (MEWS) in AUC, sensitivity, specificity, and Youden's index, with statistically significant differences (P< 0.05). CONCLUSION: An early warning on the vital signs and consciousness of hospitalized elderly patients using NEWS can facilitate advanced detection of changes in illness severity of elderly patients by medical staff and enable timely treatment, thus significantly lowering the risks of illness deterioration.

8.
Front Neurosci ; 17: 1217451, 2023.
Article En | MEDLINE | ID: mdl-37732313

Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.

9.
Phytochemistry ; 213: 113775, 2023 Sep.
Article En | MEDLINE | ID: mdl-37392937

This work reports the isolation of seven undescribed polyphenolic glycosides (1-7) together with fourteen known compounds (8-21) from the fruit of Lycium ruthenicum Murray. The structures of the undescribed compounds were identified based on comprehensive spectroscopic methods including IR, HRESIMS, NMR and ECD, and chemical hydrolysis. Compounds 1-3 possess an unusual four-membered ring, while 11-15 were firstly isolated from this fruit. Interestingly, compounds 1-3 inhibited monoamine oxidase B with IC50 of 25.36 ± 0.44, 35.36 ± 0.54, and 25.12 ± 1.59 µM, respectively, and showed significant neuroprotective effect on PC12 cells injured by 6-OHDA. Moreover, compound 1 improved the lifespan, dopamine level, climbing behavior, and olfactory ability of the PINK1B9 flies, a Drosophila model of Parkinson's disease. This work presents the first in vivo neuroprotective evidence of the small molecular compounds in L. ruthenicum Murray fruit, indicating its good potential as neuroprotectant.


Lycium , Neuroprotective Agents , Glycosides/chemistry , Lycium/chemistry , Neuroprotective Agents/pharmacology , Fruit/chemistry
10.
Neuropsychopharmacology ; 48(12): 1778-1788, 2023 11.
Article En | MEDLINE | ID: mdl-37516802

Early-life stress (ELS) is thought to cause the development of visceral pain disorders. While some individuals are vulnerable to visceral pain, others are resilient, but the intrinsic circuit and molecular mechanisms involved remain largely unclear. Herein, we demonstrate that inbred mice subjected to maternal separation (MS) could be separated into susceptible and resilient subpopulations by visceral hypersensitivity evaluation. Through a combination of chemogenetics, optogenetics, fiber photometry, molecular and electrophysiological approaches, we discovered that susceptible mice presented activation of glutamatergic projections or inhibition of GABAergic projections from the anteroventral bed nucleus of the stria terminalis (avBNST) to paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons. However, resilience develops as a behavioral adaptation partially due to restoration of PVN SK2 channel expression and function. Our findings suggest that PVN CRH neurons are dually regulated by functionally opposing avBNST neurons and that this circuit may be the basis for neurobiological vulnerability to visceral pain.


Corticotropin-Releasing Hormone , Visceral Pain , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Visceral Pain/metabolism , Maternal Deprivation , Neurons/metabolism
11.
Brain Behav Immun ; 112: 96-117, 2023 08.
Article En | MEDLINE | ID: mdl-37286175

Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.


Colitis , Immunity, Innate , Receptors, Immunologic , Triggering Receptor Expressed on Myeloid Cells-1 , Humans , Colitis/immunology , Colitis/pathology , Colitis/psychology , Gyrus Cinguli , Inflammation , Microglia/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Animals , Mice , Receptors, Immunologic/metabolism
12.
BMC Genomics ; 24(1): 332, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37322453

The rich genetic diversity in Citrullus lanatus and the other six species in the Citrullus genus provides important sources in watermelon breeding. Here, we present the Citrullus genus pan-genome based on the 400 Citrullus genus resequencing data, showing that 477 Mb contigs and 6249 protein-coding genes were absent in the Citrullus lanatus reference genome. In the Citrullus genus pan-genome, there are a total of 8795 (30.5%) genes that exhibit presence/absence variations (PAVs). Presence/absence variation (PAV) analysis showed that a lot of gene PAV were selected during the domestication and improvement, such as 53 favorable genes and 40 unfavorable genes were identified during the C. mucosospermus to C. lanatus landrace domestication. We also identified 661 resistance gene analogs (RGAs) in the Citrullus genus pan-genome, which contains 90 RGAs (89 variable and 1 core gene) located on the pangenome additional contigs. By gene PAV-based GWAS, 8 gene presence/absence variations were found associated with flesh color. Finally, based on the results of gene PAV selection analysis between watermelon populations with different fruit colors, we identified four non-reference candidate genes associated with carotenoid accumulation, which had a significantly higher frequency in the white flesh. These results will provide an important source for watermelon breeding.


Citrullus , Citrullus/genetics , Domestication , Plant Breeding , Genome, Plant , Sequence Analysis, DNA
13.
Phys Chem Chem Phys ; 25(7): 5694-5700, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36734480

Borophene has been reported as the latest very promising 2D material. We theoretically investigate the thermal radiation of ß12 borophene. ß12 borophene has been composited on Ag substrate. Theoretical research frequently mentions three types of model of ß12 borophene. The energy bands of the three models are different. Homogeneous and inversion symmetric models have a gapless Dirac cone near the K(K') point, while they are gapped in the inversion non-symmetric model. The homogeneous model has gapless triplet fermions and three-band touching points at high-symmetry points. The optical conductivity exhibits peaks due to the energy transition of high-symmetry points. The radiation spectrum follows Wien's displacement law in homogeneous and inversion symmetric models, while it is broken in the inversion non-symmetric model. The total energy radiation changes as the voltage increases for the three ß12 borophene models. The radiation of energy can be controlled by applying a suitable voltage.

14.
Nat Prod Res ; 37(17): 2916-2923, 2023.
Article En | MEDLINE | ID: mdl-36301745

The rhizome tuber of Sauromatum giganteum is known as 'Bai Fuzi' in China and has been ethnomedicinally used to treat various neurological diseases. It is considered to possess anti-Parkinson's disease (PD) potential, but the active compounds responsible for that is still unclear. In this work, nineteen compounds were isolated and identified from rhizome tuber of this plant, among which four were firstly reported, i.e. berberine (1), nicotinamide (2), rutin (3) and 5-caffeoylquinic acid (4). Six compounds (1, 3, 4, 8, 14 and 15) exhibited moderate inhibitory activity against MAO-B with IC50 of 118.8, 45.6, 96.2, 65.8, 40.0, and 49.8 µM, and two compounds (3 and 4) displayed significant protective effect on 6-OHDA-induced PC-12 cell model. The molecular docking of the bioactive compounds and MAO-B was carried out to explore the binding mode. The findings revealed the potential of S. giganteum as anti-PD herb and its inclusion in TCM could be explored.

15.
Plant Foods Hum Nutr ; 78(1): 68-75, 2023 Mar.
Article En | MEDLINE | ID: mdl-36322321

Lycium barbarum (LB) is a famous traditional Chinese medicinal plant as well as food supplement possessing various pharmacological functions such as anti-aging and antioxidant effects. The Parkinson's disease (PD)-related kinase Pink1 plays vital role in maintaining the neuron cell homeostasis, having been recognized as a potential target for the development of anti-PD drugs. In this work, the neuroprotective effects of methanol extract of LB fruit (LBFE) were investigated using a Drosophila PD model (PINK1B9) and a human neuroblastoma SH-SY5Y cell line. We found that when LBFE was supplied to the PINK1B9 flies at 6, 12, and 18 days of age, it raised the ATP and dopamine levels at all ages, extended life span, improved motor behavior, and rescued olfactory deficits of the PINK1B9 flies. In addition, histopathological examinations indicated that muscle atrophy in thoraces of the mutant flies was significantly repaired. Finally, LBFE was able to rescue the SH-SY5Y cells against MPP+-induced neurotoxicity. This work reports for the first time the anti-PD potential of L. barbarum fruit extract in PINK1 mutant fruit flies, presenting a new viewpoint for studing the mechanism of action of LBFE.


Drosophila Proteins , Lycium , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Parkinson Disease/genetics , Neuroprotective Agents/pharmacology , Lycium/metabolism , Models, Genetic , Plant Extracts/pharmacology , Protein Kinases/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/pharmacology
16.
Mol Psychiatry ; 28(2): 767-779, 2023 02.
Article En | MEDLINE | ID: mdl-36203006

Opioids are the frontline analgesics for managing various types of pain. Paradoxically, repeated use of opioid analgesics may cause an exacerbated pain state known as opioid-induced hyperalgesia (OIH), which significantly contributes to dose escalation and consequently opioid overdose. Neuronal malplasticity in pain circuits has been the predominant proposed mechanism of OIH expression. Although glial cells are known to become reactive in OIH animal models, their biological contribution to OIH remains to be defined and their activation mechanism remains to be elucidated. Here, we show that reactive astrocytes (a.k.a. astrogliosis) are critical for OIH development in both male and female mice. Genetic reduction of astrogliosis inhibited the expression of OIH and morphine-induced neural circuit polarization (NCP) in the spinal dorsal horn (SDH). We found that Wnt5a is a neuron-to-astrocyte signal that is required for morphine-induced astrogliosis. Conditional knock-out of Wnt5a in neurons or its co-receptor ROR2 in astrocytes blocked not only morphine-induced astrogliosis but also OIH and NCP. Furthermore, we showed that the Wnt5a-ROR2 signaling-dependent astrogliosis contributes to OIH via inflammasome-regulated IL-1ß. Our results reveal an important role of morphine-induced astrogliosis in OIH pathogenesis and elucidate a neuron-to-astrocyte intercellular Wnt signaling pathway that controls the astrogliosis.


Analgesics, Opioid , Hyperalgesia , Animals , Female , Male , Mice , Astrocytes/metabolism , Gliosis , Hyperalgesia/chemically induced , Hyperalgesia/genetics , Hyperalgesia/metabolism , Morphine , Pain , Wnt Signaling Pathway
17.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(6): 1011-1014, 2023 Dec 30.
Article Zh | MEDLINE | ID: mdl-38173115

One case with ascites and lower limb edema as the initial manifestations was reported.The echocardiography revealed inferior vena cava and right atrial occupation,which combined with increased alpha fetoprotein and imaging examination,suggested liver malignant tumor combined with tumor thrombus of inferior vena cava and right atrium.After targeted therapy combined with immunotherapy,the tumor shrank and alpha fetoprotein decreased significantly,suggesting that the treatment was effective.The median survival time of the patient was 3 months.This patient had a clear history of cirrhosis due to hepatitis B and was clinically diagnosed with advanced liver cancer,which suggested the importance of early liver cancer screening.


Liver Neoplasms , Vena Cava, Inferior , Humans , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/pathology , alpha-Fetoproteins , Echocardiography , Heart Atria/diagnostic imaging , Heart Atria/pathology , Liver Neoplasms/pathology
18.
J Phys Condens Matter ; 34(43)2022 Aug 30.
Article En | MEDLINE | ID: mdl-35985316

Electronic band structure and optical conductivity of single-layer graphene could be altered by applied uniaxial strain. Valley and space inversion symmetries are broken. Dirac cones are deformed. We investigate the effect of uniaxial strain on the radiative properties of graphene from the perspective of direction and modulus. Optical conductivity exhibits wealthy phenomenon due to the degeneracy of the energy band broken by strain. The total energy radiation exhibits a novel behavior of periodicity inθ, in accordance with the symmetry of the hexagonal honeycomb lattice.

19.
CNS Neurosci Ther ; 28(9): 1393-1408, 2022 09.
Article En | MEDLINE | ID: mdl-35702948

AIMS: Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1-SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD). METHODS: Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1-SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT-PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology. RESULTS: In neonatal-CRD-induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL-6 levels elevated in PVN. However, infusion of Epac agonist 8-pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV-SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL-6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI-09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL-6 into PVN simulated the visceral hypersensitivity. CONCLUSIONS: Inactivation of Epac1-SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.


Guanine Nucleotide Exchange Factors , Hyperalgesia , Intestinal Diseases , Suppressor of Cytokine Signaling 3 Protein , Visceral Pain , Animals , Colonic Diseases/genetics , Colonic Diseases/metabolism , Colonic Diseases/pathology , Corticotropin-Releasing Hormone/metabolism , Dilatation, Pathologic/complications , Dilatation, Pathologic/genetics , Dilatation, Pathologic/metabolism , Disease Models, Animal , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Hyperalgesia/etiology , Hyperalgesia/genetics , Hyperalgesia/metabolism , Hypothalamo-Hypophyseal System/metabolism , Infant, Newborn , Infant, Newborn, Diseases/genetics , Infant, Newborn, Diseases/metabolism , Interleukin-6/metabolism , Intestinal Diseases/complications , Intestinal Diseases/genetics , Intestinal Diseases/metabolism , Intestinal Diseases/pathology , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Neurons/metabolism , Pain , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Rats , Rats, Sprague-Dawley , Rectal Diseases/genetics , Rectal Diseases/metabolism , Rectal Diseases/pathology , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Visceral Pain/etiology , Visceral Pain/genetics , Visceral Pain/metabolism
20.
Neurobiol Stress ; 18: 100449, 2022 May.
Article En | MEDLINE | ID: mdl-35521065

Irritable bowel syndrome (IBS) is a common and debilitating gastrointestinal disorder that is exacerbated by stress and characterized by abdominal pain. Although microglia in the CNS have been implicated as an important mediator of the stress response, the role of microglia and microglia-GABAergic neuron interactions in the limbic area, most notably BNST, in the development of colorectal hypersensitivity has not been determined. We established a neonatal colorectal distension-induced chronic visceral hyperalgesia model in rats. The results showed that the frequency of spontaneous discharges of alBNST GABAergic neurons and the expression of GAD65/67 were significantly decreased in rats with chronic visceral pain. Moreover, ablation of BNST GABAergic neurons significantly reduced the visceral pain threshold in normal rats. Meanwhile, the number of M1 proinflammatory microglia and the expression of the M1 proinflammatory microglia-derived cytokines IL-6 and TNF-α were increased in the alBNST of rats with chronic visceral pain. Furthermore, alBNST infusion of the microglial inhibitor minocycline or IL-6 and TNF-α neutralizing antibodies significantly increased the visceral pain threshold. The decreased frequency of spontaneous discharges of alBNST GABAergic neurons in rats with chronic visceral pain was mimicked by a bath perfusion of TNF-α, but not IL-6, and was abolished by a perfusion of the microglial inhibitor minocycline. In addition, the alBNST infusion of the microglial inhibitor minocycline upregulated the expression of GAD65/67. Moreover, ablation of BNST GABAergic neurons significantly decreased the visceral pain threshold in normal rats, which was not reversed by a subsequent infusion of the microglial inhibitor minocycline. Our findings revealed this microglia-GABAergic neuron circuit in the alBNST, and this microglia-driven disinhibitory mechanism is essential for brain and gut dysfunction in stressful condition, providing a novel potential target for treating patients with IBS presenting visceral pain that is worsened during episodes of stress.

...